Mining Sequence Patterns in Evolving Databases

نویسنده

  • M nghua Zhang
چکیده

In many applications, the content of a database changes over time. For example, new customer sequences are periodically added to a bookstore’s database as the store attracts new customers. Similarly, every visit to a Web site will add a new log to the site’s log database. There are also situations in which we have to delete sequences from the database. As an example, when mining current access patterns of a Web site, we may need to delete some out-of-date logs such as those that are more than a year old. Since an operational database changes continuously, the set of frequent sequences has to be updated incrementally. One simple strategy is to apply an existing mining algorithm on the updated database. However, this strategy fails to take advantage of the valuable information obtained from a previous mining exercise. We note that this inforIGI PUBLISHING

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Fuzzy Utility Based Frequent Patterns Mining Approach for Mobile Web Services Sequences

Nowadays high fuzzy utility based pattern mining is an emerging topic in data mining. It refers to discover all patterns having a high utility meeting a user-specified minimum high utility threshold. It comprises extracting patterns which are highly accessed in mobile web service sequences. Different from the traditional fuzzy approach, high fuzzy utility mining considers not only counts of mob...

متن کامل

Approaches for Pattern Discovery Using Sequential Data Mining

In this chapter we first introduce sequence data. We then discuss different approaches for mining of patterns from sequence data, studied in literature. Apriori based methods and the pattern growth methods are the earliest and the most influential methods for sequential pattern mining. There is also a vertical format based method which works on a dual representation of the sequence database. Wo...

متن کامل

ApproxMAP: Approximate Mining of Consensus Sequential Patterns

Sequential pattern mining is an important data mining task with broad applications. However, conventional methods may meet inherent difficulties in mining databases with long sequences and noise. They may generate a huge number of short and trivial patterns but fail to find interesting patterns approximately shared by many sequences. To attack these problems, in this paper, we propose the theme...

متن کامل

PrefixSpan: Mining Sequential Patterns by Prefix- Projected Pattern

Sequential pattern mining discovers frequent subsequences as patterns in a sequence database. Most of the previously developed sequential pattern mining methods, such as GSP, explore a candidate generation-and-test approach [1] to reduce the number of candidates to be examined. However, this approach may not be efficient in mining large sequence databases having numerous patterns and/or long pa...

متن کامل

Exploring multi-dimensional sequential patterns across multi-dimensional multi-sequence databases

Existing multi-dimensional sequential pattern mining methods only discover multi-dimensional sequential pattern in databases involving one sequential dimension. Since multi-dimensional sequential patterns may exist in databases containing more than one sequential dimension, in this paper, we present algorithm PSeq-MIDim for mining multi-dimensional sequential patterns from multiple sequential d...

متن کامل

Incremental Mining for Frequent Patterns in Evolving Time Series Datatabases

Several emerging applications warrant mining and discovering hidden frequent patterns in time series databases, e.g., sensor networks, environment monitoring, and inventory stock monitoring. Time series databases are characterized by two features: (1) The continuous arrival of data and (2) the time dimension. These features raise new challenges for data mining such as the need for online proces...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015